

Welcome to lamapi’s documentation!

A simple framework for building serverless api web applications based on AWS lambda and API Gateway.

User’s Guide

Contents:

	Installation
	Python Version

	Dependencies

	Installation

	Start Serverless Project using Serverless Framework and Lamapi

	Quick Start
	A Minimal Application

	Routing

	Request

	Response

	Configuration
	Use your own configuration object

	Load configuration from environments

	Middlewares

API Reference

Indices and tables

	Index

	Module Index

	Search Page

Installation

Python Version

We recommend using the latest version of Python 3. Lamapi supports Python 3.5 and newer.

Dependencies

Lamapi is a serverless framework and depends on AWS Lambda and API Gateway, so we try to restrict dependent packages. This is the only package you need to try Lamapi except built-in packages.

Lamapi depends on AWS Lambda and API Gateway, you should deploy the code to AWS after development. We recommend you to use something like Serverless Framework [https://serverless.com/], check here [https://serverless.com/framework/docs/providers/aws/guide/quick-start/] to see how to use serverless framework on AWS.

Installation

You should install lamapi in the current directory since you can upload it to Lambda.

pip install -t lib lamapi

Lamapi is now installed. Check out the Quick Start or go to the
Documentation Overview.

Check out our source from Github [https://github.com/wwtg99/lamapi].

Start Serverless Project using Serverless Framework and Lamapi

We assume you have Serverless Framework installed. Installation Guide [https://serverless.com/framework/docs/providers/aws/guide/installation/]

Create A Project

serverless create --template aws-python3 --path hello

Update Configuration File

Update serverless.yml to something like this:

service: hello

provider:
 name: aws
 runtime: python3.7

functions:
 hello:
 handler: handler.handler
 events:
 - http:
 path: hello
 method: get

We use the python3.7 interpreter and add a function named hello listening at /hello path.

Note, you should use lambda-proxy integration (it is the default value) for your function because it formats a standard request and response structure. See Serverless Lambda Proxy Integration [https://serverless.com/framework/docs/providers/aws/events/apigateway/#lambda-proxy-integration] and AWS API Gateway Integration [https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-api-integration-types.html].

Then we edit handler.py file as below:

from lib.lamapi import Application

def handler(event, context):
 app = Application()

 @app.route(path='/hello', method='GET')
 def hello(request):
 return ['hello world']

 return app.run(event)

Deploy & Test Your Project

Deploy project

serverless deploy

Invoke function

serverless invoke -f hello -l

Next start to use Lamapi to build a web API Quick Start.

Quick Start

A Minimal Application

We assume you install Lamapi under lib directory and start a serverless project using Serverless Framework. Installation.

A minimal Lamapi application looks something like this:

from lib.lamapi.app import Application

def lambda_handler(event, context):
 app = Application()

 @app.route(path='/', method='GET')
 def hello(request):
 return 'Hello'

 return app.run(event)

So what did that code do?

	First we import Application class, an instance of this class will help us to handle http event and return response.

	Next in the lambda_handler() function (which is the entry point for the Lambda) we create an instance of this class.

	Then we use the route() decorator to tell Lamapi what URL should trigger our function.

	The function receives a request object and returns the message we want to display in the user’s browser.

Just save it as hello.py or something similar. Then deploy it to the AWS Lambda and API Gateway or deploy using Serverless Framework as below.

serverless deploy

Then test it as:

serverless invoke -f hello

Then you will get output as below:

blalbal

Is it as simple as Flask?

Routing

Routing is as simple as Flask. Use app.route descriptor to functions with path and/or methods.

Listening on path / with all methods,

def lambda_handler(event, context):
 app = Application()

 @app.route(path='/')
 def hello(request):
 return 'Hello'

 return app.run(event)

Listening on path / with GET method,

def lambda_handler(event, context):
 app = Application()

 @app.route(path='/', method='GET')
 def hello(request):
 return 'Hello'

 return app.run(event)

Use list to listen on more methods,

def lambda_handler(event, context):
 app = Application()

 @app.route(path='/', method=['GET', 'POST'])
 def hello(request):
 return 'Hello'

 return app.run(event)

Request

Each function will receive a request instance as parameter. You can use this object to get anything you want.

A request body from API Gateway will look like this:

{
 "body": "",
 "resource": "/hello",
 "path": "/hello",
 "httpMethod": "GET",
 "isBase64Encoded": false,
 "queryStringParameters": null,
 "pathParameters": null,
 "stageVariables": null,
 "headers": {
 "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8",
 "Accept-Encoding": "gzip, deflate, sdch",
 "Accept-Language": "en-US,en;q=0.8",
 "Cache-Control": "max-age=0",
 "User-Agent": "Custom User Agent String"
 }
 "requestContext": {
 //......
 }
}

Lamapi framework will store this object in request object. And you can get all you want by accessing request object’s attributes.

Request Path

def hello(request):
 path = request.path

Request Method

def hello(request):
 method = request.method

Query Parameters

def hello(request):
 id = request.query.get('id')
 # if request url is /hello?id=1
 # then id = 1
 name = request.query.get('name') or 'default'
 # give some default value

Form Data

To access form data (data transmitted in a POST or PUT request) you can use the data attributes.

def hello(request):
 name = request.data.get('name') or 'default'

Path Parameters

If you define some path parameters in API Gateway, you can get them by path_param. If you define your path as /hello/{name}, then requested as /hello/world, you will get path parameters as name=world.

def hello(request):
 name = request.path_param.get('name') or 'default'

Request Header

Headers will be stored in header attribute as a dict.

def hello(request):
 accept = request.header.get('Accept')

Response

Anything you return to handler function will be translated to a JSON object which will be returned to client. You can return a string, dict, list or any object can be encoded to json.

def hello(request):
 return 'hello world'

If you want to return a custom http code such as 400 or custom headers, you can build response object by yourself.

from lib.lamapi.wrappers import Response

def hello(request):
 return Response([], status=400, headers={'X-CUSTOM': 'xxx'})

Where to go next? Learn deep about Configuration.

Configuration

Use your own configuration object

Lamapi use a simple config object to store variables. You can get config object by config attribute of request object.

def hello(request):
 // get config object
 config = request.config
 // get config variables
 log_level = request.config.LOG_LEVEL

You can define your own variables by extending the base config class.

Add a config.py file,

from lib.lamapi.config import BaseConfig

class Config(BaseConfig):

 VAR1 = 'value1'

Then you can start application by this config class,

from lib.lamapi import Application
from config import Config

def handler(event, context):
 config = Config()
 app = Application(config)

 @app.route(path='/', method='GET')
 def hello(request):
 // get config variable
 var1 = request.config.VAR1

Load configuration from environments

Mostly you want to config your application by environments.

Change your config.py file,

import os
from lib.lamapi.config import BaseConfig

class Config(BaseConfig):

 VAR1 = os.environ.get('VALUE1') or 'default'

Built-in configuration

There are also some built-in configuration defined in the BaseConfig class. You can change them by using environments.

LOG_LEVEL

Define the logging level, values [FATAL, ERROR, WARNING, INFO, DEBUG], default ERROR

LOG_FORMATTER

Define the logging formatter, default %(asctime)s [%(levelname)s] %(filename)s (%(lineno)d): %(message)s

ENABLE_CORS

Enable CORS or not, values [on, off], default off

Middlewares

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to lamapi’s documentation!

 		
 Installation

 		
 Python Version

 		
 Dependencies

 		
 Installation

 		
 Start Serverless Project using Serverless Framework and Lamapi

 		
 Create A Project

 		
 Update Configuration File

 		
 Deploy & Test Your Project

 		
 Quick Start

 		
 A Minimal Application

 		
 Routing

 		
 Request

 		
 Request Path

 		
 Request Method

 		
 Query Parameters

 		
 Form Data

 		
 Path Parameters

 		
 Request Header

 		
 Response

 		
 Configuration

 		
 Use your own configuration object

 		
 Load configuration from environments

 		
 Middlewares

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

